Simultaneous conversion of duration and spectrum based on statistical models including time-sequence matching

نویسندگان

  • Kaori Yutani
  • Yosuke Uto
  • Yoshihiko Nankaku
  • Tomoki Toda
  • Keiichi Tokuda
چکیده

This paper describes a simultaneous conversion technique of duration and spectrum based on a statistical model including time-sequence matching. Conventional GMM-based approaches cannot perform spectral conversion taking account of speaking rate because it assumes one to one frame matching between source and target features. However, speaker characteristics may appear in speaking rates. In order to perform duration conversion, we attach duration models to statistical models including time-sequence matching (DPGMM). Since DPGMM can represent two different length sequences directly, the conversion of spectrum and duration can be performed within an integrated framework. In the proposed technique, each mixture component of DPGMM has different duration transformation functions, therefore durations are converted nonlinearly and dependently on spectral information. In the subjective DMOS test, the proposed method is superior to the conventional method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral conversion based on statistical models including time-sequence matching

This paper proposes a spectral conversion technique based on a new statisticalmodel which includes time-sequence matching. In conventional GMM-based approaches, the Dynamic Programming (DP) matching between source and target feature sequences is performed prior to the training of GMMs. Although a similarity measure of two frames, e.g., the Euclid distance is typically adopted, this might be ina...

متن کامل

Using Context-based Statistical Models to Promote the Quality of Voice Conversion Systems

This article aims to examine methods of optimizing GMM-based voice conversion systems performance in which GMM method is introduced as the basic method for improvement of voice conversion systems performance. In the current methods, due to using a single conversion function to convert all speech units and subsequent spectral smoothing arising from statistical averaging, we will observe quality ...

متن کامل

A New RSTB Invariant Image Template Matching Based on Log-Spectrum and Modified ICA

Template matching is a widely used technique in many of image processing and machine vision applications. In this paper we propose a new as well as a fast and reliable template matching algorithm which is invariant to Rotation, Scale, Translation and Brightness (RSTB) changes. For this purpose, we adopt the idea of ring projection transform (RPT) of image. In the proposed algorithm, two novel s...

متن کامل

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

Appraisal of the evolutionary-based methodologies in generation of artificial earthquake time histories

Through the last three decades different seismological and engineering approaches for the generation of artificial earthquakes have been proposed. Selection of an appropriate method for the generation of applicable artificial earthquake accelerograms (AEAs) has been a challenging subject in the time history analysis of the structures in the case of the absence of sufficient recorded accelerogra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008